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ABSTRACT5

Air-sea interaction over the North Pacific is diagnosed using a simple, local coupled au-6

toregressive model constructed from observed 7-day running mean sea-surface temperature7

(SST) and 2-m air temperature (TA) anomalies during the extended winter from the 1ox1o8

OAFlux dataset. Though the model is constructed from one-week lag statistics, it success-9

fully reproduces the observed anomaly evolution through lead times of 90 days, allowing10

an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing11

upon North Pacific SSTs. It is found that east of the dateline, SST variability is maintained12

by, but has little effect on, TA variability. However, in the Kuroshio-Oyashio confluence13

and extension region, about half of the SST variability is independent of TA, driven instead14

by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis15

does not alter this conclusion, suggesting TA adequately represents the atmosphere. Re-16

peating the analysis with the output of two control simulations from a fully-coupled global17

climate model (GCM) differing only in their ocean resolution yields qualitatively similar re-18

sults. However, for the simulation employing the coarse-resolution (1o) ocean model, all SST19

variability depends upon TA, apparently caused by a near absence of ocean-induced noise20

forcing. Collectively, these results imply that a strong contribution from internal oceanic21

forcing drives SST variability in the Kuroshio-Oyashio region, which may be used as a justi-22

fication for atmospheric GCM experiments forced with SST anomalies in that region alone.23

This conclusion is unaffected by increasing the dimensionality of the model to allow for24

intra-basin interaction.25
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1. Introduction26

The importance of air-sea interaction to extratropical atmospheric variability has been27

the subject of research for over 50 years (Namias 1959; Bjerknes 1964). The fundamental28

issue is that while sea-surface temperature (SST) anomalies are largely forced by the atmo-29

sphere (Cayan 1992), they can feed back onto the atmosphere (Kushnir et al. 2002). This30

coupled system was expressed simply by Barsugli and Battisti (1998), hereafter BB98, as:31
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(1)

where TS and TA are anomalous SST and surface air-temperature, respectively, and ξA rep-32

resents random atmospheric forcing (e.g. synoptic weather variability) that exists regardless33

of SST variability. The diagonal coefficients a and d represent the intrinsic damping of TA34

and TS, respectively, while the off-diagonal elements b and c quantify the coupling: b is the35

effect of TS → TA, vice versa for c. Equation (1) can be considered a null hypothesis for36

air-sea coupling and an extension to the simpler null hypothesis of atmospheric forcing of37

the uncoupled ocean (Frankignoul and Hasselmann 1977; hereafter, FH77). Notably, this38

hypothesis implies that internal oceanic variability is not important in forcing TS anomalies.39

BB98 suggested that coupling increases the persistence of SST anomalies by ∼50%40

through “reduced thermal damping”; that is, as TA adjusts to the underlying SST at longer41

timescales, the heat-flux between the two (in a system driven purely by TA) tends to zero.42

Consequently, running long-duration atmospheric global climate models (GCMs) forced in43

the extratropics by observed historical SST anomalies is problematic due to a large, poten-44

tially spurious upward surface heat flux (latent + sensible; upward being from the ocean to45

the atmosphere) at low frequencies (BB98; Saravanan 1998; Bretherton and Battisti 2000;46

Sutton and Mathieu 2002). In addition, previous large-scale SST-forced AGCM experiments47

(e.g. Peng et al. 1995, 1997; Kushnir and Held 1996; Kushnir et al. 2002) have not, in general,48

tended to support a significant role for extratropical SST forcing of the atmosphere. This49
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is in stark contrast to the well-documented role of tropical SST anomalies in remotely gen-50

erating extratropical atmospheric and SST anomalies (e.g. Ferranti et al. 1994; Alexander51

et al. 2002; Hoerling and Kumar 2002).52

The assumption made by FH77 and BB98 is that SSTs are driven purely by random53

atmospheric variability. However, in the vicinity of western boundary currents (WBCs),54

SST variability is not simply a passive response to surface heat flux forcing (Frankignoul55

and Reynolds 1983), but instead may be forced by ocean dynamics and transport (Kelly56

2004). For example, westward oceanic Rossby wave propagation resulting from anomalous57

wind stress curl forcing in the central and eastern Pacific (Deser et al. 1999; Schneider58

et al. 2002) can result in anomalous heat transport within the Kuroshio current that is of59

the same order of magnitude as the surface heat flux, often changing the sign of the SST60

tendency implied from the surface heat flux alone (Qiu 2000). Ekman advection, especially61

in the vicinity of SST fronts, can also be an important factor in driving SST changes as62

shown for the North Pacific by Miller et al. (1994). In fact, Lee et al. (2008) extended63

the BB98 model through the inclusion of SST noise (as a function of atmospheric noise)64

and found that this could substantially mitigate the impact of reduced thermal damping.65

Dong and Kelly (2004) suggest that Ekman advection plays a secondary role to geostrophic66

currents in forcing mixed-layer temperature changes within the upper 400-m layer of the67

Gulf Stream, although since 400-m is substantially deeper than the Ekman layer, they may68

have underestimated the direct role of Ekman currents on SST.69

Additionally, Nakamura et al. (2004) showed that the most active regions of synoptic70

atmospheric eddies are strongly collocated with WBCs and their associated SST fronts,71

creating intense upward surface heat fluxes. However, whether this collocation is caused72

by the strong SST gradient (Minobe et al. 2008) or from the land-sea thermal contrast73

(Brayshaw et al. 2009, 2011) is still an open question. Regardless, the rapid TA damping74

time scales (up to 1 day-1; Nonaka et al. 2009) over the SST gradient can be expected to75

be partially due to the differential sensible heat flux forcing maintained by the SST front76
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(Nakamura et al. 2008; Taguchi et al. 2009). In short, there is evidence that air-sea interaction77

may exhibit differences within the western portions of extratropical oceans compared to the78

east due to the elevated role of internal oceanic thermal processes.79

The purpose of this study is to examine how air-sea interaction differs across the ex-80

tratropical North Pacific. We construct an empirical version of the local, coupled model81

of BB98 (1) from the relatively new OAFlux observational dataset (Yu and Weller 2007).82

Unlike BB98, however, we allow for the possibility of both TA and TS stochastic forcing.83

There are several questions we seek to answer. Is the local, coupled model equally valid84

across different portions of the North Pacific? If not, can the model be improved by allow-85

ing for non-local interaction? Does the role of coupling have a geographical dependence?86

How significant is the omission of oceanic noise in BB98’s model? And finally, how well do87

coupled global climate models (GCMs) capture mid-latitude air-sea interaction within our88

framework?89

The manuscript is ordered in the following manner. In Section 2, we describe the obser-90

vational and coupled GCM datatsets and how the empirical model is constructed. Section 391

contains the main results, including the spatial structure of the coupled model coefficients,92

and an evaluation of how well the model reproduces observed statistics and how coupling93

varies across the basin. Also in section 3 is a comparison of how the empirical model performs94

when applied to the output of a coupled GCM. In Section 4, we consider the role of remote95

forcing and whether it changes the interpretation of the local model. Finally, conclusions96

are provided in Section 5, along with open questions stemming from this study.97

98

2. Constructing the local, coupled model99

100

a) Observations101

In contrast to BB98, we develop the local, coupled model empirically using linear inverse102

modeling (LIM; Penland 1989; Mosedale et al. 2005). In this case, the LIM portrays a103
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bivariate Markov process that is forced by Gaussian white noise ξ:104

dx

dt
= Lx + ξ (2)

where the state vector x(t) = [TA(t) TS(t)]
T represents the time evolution of 7-day running105

mean anomalies of 2-m air temperature (TA) and SST (TS) taken from the 1ox1o OAFlux106

dataset (Yu and Weller 2007) from 1985-2009. Note that in contrast to BB98, ξ includes107

both TA and TS noise forcing (Zubarev and Demchenko 1992). We focus on the North Pacific108

(20o-60oN, 120o-270oE) during the extended boreal winter months (November-March), which109

reduces the role of reemergence on TS anomalies (Alexander and Deser 1995). Repeating110

the analysis on the winter-only period (December-February) yields very consistent results.111

To avoid the impact of sea-ice, all grid points where the minimum SST is below -1.8oC are112

excluded. L is the feedback, or deterministic, matrix of similar coefficients as in BB98:113

L =







a b

c d







.

The determination of L and other details regarding the LIM can be found in the Appendix.114

Briefly, a LIM is fit to each point [by finding L using the lagged covariance of x via (A1) and115

noise covariance Q=
〈

ξξT
〉

dt as a residual in the fluctuation-dissipation relation via (A3)];116

collectively, we refer to the 1-D (bivariate) model as the local-LIM. Note that we term an117

“uncoupled” system as one where b, c = 0. In contrast, BB98 refer to “uncoupled” where118

only b = 0 since their aim was to contrast a system with a slave-ocean to that with prescribed119

SST (setting b, c = 0 in BB98 would result in no SST variability). Since we do not assume120

a passive ocean, but instead use observations to determine the amount of oceanic influence121

through Q, we are able to also set c = 0 to determine the intrinsic role of the ocean.122

There are several methods to assess the performance of the LIM. One approach is to123

determine cross-validated forecast skill where starting with x(t), one can make predictions124
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at various lead times via (A2) and compare to the observed evolution (Winkler et al. 2001;125

Newman et al. 2003; Kossin and Vimont 2007; Pegion and Sardeshmukh 2011). Because the126

local-LIM has skill comparable to that of the FH77 TS-only model (not shown), its value is127

predominantly of diagnostic nature. Instead of assessing forecast skill, we compare the pre-128

dicted covariance (diagonal elements of C(0) and C(τ), see Appendix) and cross-covariance129

(off-diagonal elements) to observations as a function of lead time. Nonetheless, we later130

present skill when comparing the local-LIM with a higher-order LIM that allows for remote131

interaction (section 4). Finally, while the focus here is mainly on seasonal variability, one132

must remember that the LIM provides a red-noise null hypothesis on all timescales.133

134

b) Coupled GCMs135

Recently, it has been recognized that course-resolution coupled models generally under-136

estimate smaller-scale oceanic features such as mesoscale eddies and mid-latitude SST fronts137

(Small et al. 2008). For example, Bryan et al. (2010) showed that the ocean component of a138

coupled GCM must be eddy-resolving in order to reproduce the magnitude of the observed139

positive correlation between small-scale wind-stress and SST anomalies found in earlier stud-140

ies (e.g. Chelton et al. 2004; Xie 2004). To investigate air-sea interaction within coupled141

models, we extend the LIM analysis to two simulations of the Community Climate System142

Model (CCSM) version 3.5, developed by the National Center for Atmospheric Research143

(NCAR) (Gent et al. 2010). The simulations only differ in their ocean model, which has a144

resolution of 0.1o (1o) in the high (low) resolution simulation. Details of these simulations145

are available in Kirtman et al. (2012) (also Bryan et al. 2010) and hereafter we refer to the146

high- (low-) resolution simulations as HR (LR). To maintain consistency with the OAFlux-147

based local-LIM, the output of both GCMs is linearly interpolated to the OAFlux 1ox1o grid148

and 25 years of data are sought. However, only 19 years of data are available for the LR149

simulation. Because a shorter record could affect the fit of L in (A2), we accessed 30 years150

of an additional 1o CCSM simulation from the slightly later version 4 (Gent et al. 2011; C.151
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Hannay, personal communication). Aside from small differences in the mean climate (e.g.152

position of WBCs), the LIM coefficients and coupling characteristics of both low-resolution153

simulations appear very comparable and only LR is discussed hereafter.154

155

3. Results156

a) Observed and predicted covariance157

Figure 1 shows the wintertime standard deviation (σ) of weekly-averaged TS anomalies158

(σS; Fig. 1a), and weekly- and daily-averaged TA anomalies (σA; Fig. 1b,c respectively).159

Due to the ocean’s large thermal inertia, computing σS by averaging TS over increasing160

timescales (daily to weekly to monthly) has a negligible influence on variance (not shown).161

Enhanced TS variability is found within the Kuroshio/Oyashio confluence and separation162

region immediately east of Japan (Mitsudera et al. 2004), their extensions near 40oN, 170oE163

(Kwon et al. 2010) and a broad region from the dateline, 30oN, northeast to 40oN, 150oW164

associated with subtropical front variability (Nakamura et al. 1997) and ENSO teleconnec-165

tions (Alexander 1992; Diaz et al. 2001). In contrast to TS, and due to the presence of166

short-lived synoptic eddies, σA is reduced on average by 30% after taking weekly averages167

(compare Fig. 1b to 1c, note different color scales). However, the reduction is non-uniform168

as σA is reduced by 50% east of Japan but only by 10-20% in the northeastern Pacific.169

Thus, our use of 7-day running mean anomalies implies that a modest portion of variability170

is lost in the most active part of the North Pacific storm track. However, the 7-day running171

mean provides a good compromise between retaining variability and maintaining accurate172

predictions of lag covariance (see appendix).173

The spatial variability of the L coefficients is shown in Figure 2a-d. A Monte Carlo test174

using synthetically generated data (see Section 3b for details) suggests that the standard175

error for coefficients a, c, d is ∼10%, while that of b is ∼20% (likely due to the shortness176

of the record; see Mosedale et al., 2005). For reference, the coefficients obtained by BB98,177

(a,b,c,d) = (-0.22, 0.10, 0.01, -0.01), would be most representative of a point in the Gulf178

7



of Alaska. Diagonal coefficients a, d are damping timescales (in days-1), while off-diagonal179

coefficients b, c represent coupling strength (b : TS → TA; c : TA → TS). Coefficients a and180

d are negative everywhere, as expected due to the damping of SST and TA to climatology181

through radiative and surface heat flux anomalies (BB98; Frankignoul and Kestenare 2002;182

Park et al. 2005), regardless of coupling. Note that the TS damping rate d varies by a183

factor of 3 across the North Pacific, with the smallest values of |d| (i.e. greatest persistence)184

occurring in regions of strong currents and/or large mixed-layer (ML) depths extending185

from Japan northeast into the central North Pacific (Alexander 2010). Meanwhile, highest186

values of |d| (greatest damping) occur in the subtropical regions of shallow ML depths,187

where even weak atmospheric forcing can quickly modify SST through surface fluxes and188

wind-forced entrainment of sub-ML water (Frankignoul 1985; Alexander et al. 2000). Note189

that this mechanism may also explain the large values of the coupling coefficients in the190

subtropical region. Conversely, values of the off-diagonal elements are everywhere positive,191

consistent with reduced thermal damping of both TS and TA (BB98). We can compare our192

TS feedback strength, b, to previous mid-latitude heat flux feedback estimates of 20-30 W193

m-2 oC-1 (e.g. Frankignoul and Kestenare 2002; Park et al. 2005) by converting b into an194

energy flux that acts on an atmospheric slab of thickness Ha, density ρa and heat capacity195

Ca. Even when using an 800-mb thick slab (Ha ≈ 12000 m; i.e. supposing the feedback acts196

on the entire troposphere), ρ̄a = 0.80 kg m-3, Ca = 1000 J kg-1 oC-1 and the median value of197

b = 0.11(oTA
oT−1

S
day−1), we estimate a feedback strength α = bρ̄aCaHa of 12 W m-2, which198

is lower than previous estimates. The discrepancy signals that previous estimates may have199

convolved the forcing and feedback, though our estimate may be conservative since we do200

not explicitly account for wind, moisture and stability anomalies.201

The usefulness of any model is gauged by its ability to reproduce observations. Figure202

3 shows the observed lag-covariance, C(τ), for TS and TA with τ=(30,60,90) representing203

the degree of persistence over the course of those periods. Regions of high TS persistence204

coincide with regions of high TS variability (cf. Fig. 3a,c,e with Fig. 1a) consistent with the205
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dominance of slow processes in the ocean. TA persistence generally resembles that of TS east206

but not west of the dateline (most notably differing in the WBC region), implying either207

weaker or non-local coupling there as may be expected due to the rapid TA variability. Figure208

3 also shows where the difference between C(τ) and predicted covariance, C̃(τ), significantly209

differs at the p = 0.025 level [based on 200 iterations of a Monte Carlo test where x is sub-210

sampled with replacement during the extended winter months]. For τ=30 days, the LIM211

predicts C̃(τ) very well; as lead time increases (Fig. 3c-f), the LIM continues to do well west212

of the dateline, but somewhat underestimates SST persistence east of the dateline, perhaps213

because remote ENSO forcing (e.g. Alexander et al. 2002) is not fully captured by the214

local-LIM. For long lags, an additional complication is a changing mixed layer depth, which215

will clearly affect the coefficients in L. Meanwhile, Figure 3b,d,e shows that C̃(τ) for TA216

displays similar characteristics as TS, although persistent TA variability is limited to east of217

the dateline. The predicted lag cross-covariance (i.e. off-diagonal elements of C̃(τ) when TS218

either leads or lags TA) shows very similar characteristics as Fig. 3 and is discussed further219

in Section 4.220

The local-LIM predicts C̃(τ) for TS in the WBC region remarkably well despite the con-221

cern of previous studies when using the FH77-type model in a dynamically active ocean222

region (Reynolds 1978; Hall and Manabe 1997). The chief issue is how the local-LIM treats223

oceanic processes, which are either represented deterministically in the TS damping coeffi-224

cient d or are captured by TS noise forcing. Since the LIM is trained using a 7-day lag, it225

is possible that d also implicitly includes the effect of anomalous currents and perhaps the226

aggregate effect of mixing by eddies. This can be further investigated by both increasing227

the training lag (though with the expense of smoothing the data) and incorporating other228

variables such as sea-surface height anomalies, but we leave this matter for future research.229

Frankignoul and Reynolds (1983) extended the FH77 model to include an estimate of the230

mean current acting on anomalous ∇TS, finding only a slightly increased TS persistence231

time on seasonal timescales. However, they were not able to estimate the role of anomalous232
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currents and their use of EOF-filtered 5ox5o data likely suppressed all oceanic eddy activity.233

To gain some insight into the role of internal oceanic processes in the local-LIM, we chose234

to investigate the spatial structure and spectrum of the noise forcing.235

We approximate the noise forcing ξ of SST (TA) in (2) as ηS (ηA), a residual from the236

integration of (2) over a short time period (∆t = 1 day):237

238

η(t) =
x(t+∆t)− x(t)

∆t
− Lx(t). (3)

Figure 4a shows the power spectra of SST, ηA and ηS for 20 randomly sampled points over239

the North Pacific (shown as dots in Fig. 4c), including five points within the WBC region.240

Note that η is found after rebuilding the local-LIM using annual data, which has little to no241

effect on the main findings (i.e. the full-year L is similar to the wintertime-only L but allows242

for the continuous estimation of η). The power of observed SST variance increases rapidly243

for ω < 30 days-1, follows the ω−2 curve through ω∼300 days-1 and begins to asymptote as244

damping dominates for lower-frequencies (Frankignoul 1985). Meanwhile, the spectra of ηS,245

while slightly reddened for ω > 50 days-1, is nearly flat for lower frequencies implying that246

the impact of oceanic processes on TS is adequately approximated as white noise for ω <247

50 days-1. An F-test (not shown) reveals that the power spectra of ηS does not significantly248

differ (p=0.025) from an AR1 null hypothesis using a relatively short decorrelation timescale249

of 15 days. Similar conclusions are reached about ηA, except its decorrelation timescale is250

an even shorter 5 days, which given the use 7-day running mean used for x can be justified251

as nearly white noise.252

To investigate the extent to which the noise forcing varies across the North Pacific, Fig.253

4b,c shows the diagonal elements of Q, which represent the variances of TA and TS noise254

forcing, respectively. Figure 4c shows that TS forcing is maximized in the WBC region,255

which represents the aggregate impact on TS forcing from anomalous currents, gradients256

and mesoscale eddy activity portrayed by ξS in (2). To directly compare our model to BB98,257

the fluctuation-dissipation relation is used to find the amount of TS variance in the absence258
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of TS noise forcing (not shown). Not surprisingly, only 20-30% of TS variance remains within259

the WBC, while 60-70% is retained in the eastern portion of the North Pacific (the latter260

number is likely an underestimate since the LIM does not have ENSO-forced TA variability,261

see Fig. 3). Meanwhile, even taking into account the 7-day smoothing, the strongest TA262

forcing occurs just offshore of the Asian continent and extends over the WBC region (Fig.263

4b), associated with the North Pacific storm track variability (Nakamura et al. 2004). Finally,264

a secondary maximum of TA noise forcing along the southern coast of Alaska coincides with265

weak TS variability (cf. Fig. 1a) there and we do not discuss this further.266

b) The role of coupling267

In the previous section, it was shown that the local-LIM adequately represents observed268

extratropical TA and TS coupled variability on weekly timescales over the course of a season.269

As originally suggested in BB98, coupling boosts persistence of both TA and TS anomalies.270

However, the non-homogeneity of the coupling coefficients (cf. Fig. 2 b,c) raises the ques-271

tions: what are the impacts of the differing coupling strength across the North Pacific? and,272

how sensitive are the TA and TS variances to the coupling strength? We approach this273

question by determining what the variability would be for a system like (2) with the same274

noise forcing but with uncoupled dynamics Lu and noise Qu (that is, where L is modified to275

remove the effects of coupling by setting b = c = 0, and Q has been modified by setting the276

off-diagonal elements to 0). We create two synthetic data sets by numerically integrating (2)277

for 9000 days, with either L and Q or Lu and Qu, for each grid point using the numerical278

method outlined by Penland and Matrosova (1994) and a time step of 2 hours. The integra-279

tion using L forced by the observed noise covariance yields coupled TS and TA variability280

that reproduces the observed variance to within 5% (ensuring the numerical method works281

properly), while integration of (2) with Lu yields time series of uncoupled variability, Tu
S and282

Tu
A.283

Figure 5 shows the ratio of uncoupled to coupled variance for TS and TA (in Fig. 5a,284

TS and Tu
S have been monthly averaged before calculating this ratio). Over large areas of285
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the North Pacific, SST variability is nearly eliminated without coupling, with the notable286

exception of the WBC region where 40-70% of SST variability is retained. The use of 1o data287

implies that the results in the latter region may be underestimated (Taguchi et al. 2009), and288

in the future it may be worthwhile to redo this calculation with higher resolution datasets. A289

second region with relatively large intrinsic TS variability is located within and just south of290

the Bering Sea, which is potentially related to oceanic processes associated with variability291

in the sea-ice edge and is not discussed further. In contrast to TS, TA variability is largely292

retained after uncoupling (Fig. 5b), confirming that the ocean’s impact on the atmosphere293

is much weaker than the atmosphere’s impact on SST. A relative minimum in the fraction294

of uncoupled TA variability occurs from 20oN, 165oE to about 40oN, 150oW, which is also295

where b, c are largest (Fig. 2b,c) suggesting this is where local coupling is most important.296

Meanwhile, nearly all persistent TA variability [represented by C(τ > 14 days) and arising297

mainly from the feedback by TS], is eliminated in the absence of coupling (not shown),298

though note that this is limited to the ENSO teleconnection region east of the dateline (see299

Fig. 3f). Still, Fig. 5 clearly shows that outside of the WBC region, the atmosphere is the300

ultimate source of air-sea variability.301

One caveat in our treatment of air-sea interaction is the absence of wind-forcing. Since302

we do not explicitly consider anomalous wind (U, representing u and v) in the local-LIM,303

it is possible that TS anomalies generated via Ekman transport are being erroneously in-304

corporated as TS noise forcing (Lee et al. 2008). This would result in an overestimate of305

intrinsic TS variability shown in Fig. 5a. However, upon reconstructing the local-LIM with u306

(i.e. x(t) = [TA(t) TS(t) u(t)]
T), which should serve as a good proxy for anomalous Ekman307

advection in the Kuroshio-Oyashio region, it is found that the amount of TS noise forcing308

(Fig. 4c) and uncoupled TS variability (Fig. 5a) is essentially unchanged (not shown). In309

fact, the main change due to the addition of u is in the dynamics of TA, while leaving the net310

atmospheric impact on TS unaltered. In short, the local-LIM implicitly includes the impact311

of u via TA and thus, the subsequent impact this may have on dTS/dt; any remaining small312
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impact of u (and v) on TS will be included in the noise.313

A secondary caveat in our estimate of intrinsic TS variability arises from the neglect314

of removing the noise-induced drift. To the extent that all four coefficients in L represent315

wind-dependent fluxes, the coefficients should not be steady since the wind varies much316

more rapidly than TA or TS, yielding state-dependent, or multiplicative, noise (Sura et al.317

2006; Sura and Newman 2008). State-dependent noise simultaneously weakens coupling and318

damping; for example, at Ocean Weathership (OWS) P, previously located in the Gulf of319

Alaska, Sura and Newman (2008) estimate that this drift reduces the coupling strength by320

about 30% and the SST damping rate by about 10%. Since multiplicative noise is state-321

dependent, it should also be uncoupled. Using the values of the drift and noise obtained by322

Sura and Newman (2008) for OWS P, uncoupling and eliminating all TA-dependent noise323

in the SST tendency equation results in a modest 5% reduction in retained SST variance.324

Stated differently, our neglect of the noise-induced drift implies a slight overestimate of in-325

trinsic SST variability. Of course, this estimate is for OWS P, and may be substantially326

different in other parts of the basin.327

328

c) Air-sea coupling in fully coupled GCMs329

Recent studies have suggested that air-sea interaction on small scales may oppose the330

BB98 paradigm in that SST anomalies force changes in the net surface heat flux through331

modification of the boundary layer wind profile either by changing the low-level stability or332

due to dynamical adjustment (Xie 2004; Samelson et al. 2006; Small et al. 2008). Coupled333

modeling experiments by Bryan et al. (2010) further suggest that: (i) the fidelity to the334

observed SST-wind stress relationship is greatly improved when an eddy-resolving ocean is335

used, and (ii) for the version of CCSM3.5 with an eddy-resolving ocean model, increasing336

atmospheric resolution provides no additional benefit. Thompson and Kwon (2010) and337

Kirtman et al. (2012) suggest that the benefit of including ocean eddies also applies to338

the larger-scale oceanic circulation, not just at the small-scale. Collectively, these findings339
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suggest that resolving ocean eddies enhances the realism in depicting air-sea interaction.340

To test this hypothesis, we repeat the local-LIM analysis using two recent coupled GCM341

simulations from CCSM3.5 (Gent et al. 2010) that only differ in their oceanic model resolu-342

tion. The HR (LR) simulation has an ocean model resolution of 0.1o (1.0o); both employ the343

0.5o Community Atmosphere Model version 3 for the atmosphere. Note the HR allows for344

oceanic eddies, which are parameterized by the large-scale flow in the LR. Figure 6a,b shows345

the standard deviation of weekly SST anomalies in the LR and HR, respectively. The LR346

displays a commonly known northward bias in the WBC separation shown by other lower347

resolution models (Thompson and Kwon 2010), with the maximum WBC SST variability348

located around 43oN in Fig. 6a compared to around 38oN in Fig. 1a. In contrast, the HR re-349

produces the latitude of maximum variability better, but shows substantially too much SST350

variability basin-wide (Fig. 6b) and appears to be less successful than the LR in represent-351

ing variability in the ENSO teleconnection/subtropical front region near 35oN, 150oW. Both352

models reproduce the amplitude and structure of TA variance very well (not shown). Figure353

2e-l shows the coefficients of L obtained for both GCM simulations. Both GCMs capture354

the structure and amplitude of the TA damping (a) and the relative increase in TS damping355

in the subtropics, but both also underestimate the TS damping (d) and the TA effect on356

TS (c). Meanwhile, uncoupling L from the HR and LR local-LIMs yields quite different357

results: in the LR simulation, there is very little SST variability that is not generated by358

the atmosphere (Fig. 6c), while 60-80% of SST variability in the HR is independent of the359

atmosphere over large portions of the western North Pacific (Fig. 6d). This stark difference360

appears to be due to different TS noise forcing for each model (Fig. 6e,f), since compared to361

observations (cf. Fig. 4c), HR overestimates TS noise forcing within the WBC by a factor362

of 5, while LR grossly underestimates it. No such difference exists for the models’ TA noise363

forcing, which is comparable to observations (not shown).364

365

4. The importance of non-local factors366
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The benefit of using a local model is its simplicity, but one potential concern is that367

the local-LIM might convolve non-local processes in the coefficients contained within L, as368

would occur if coefficient a (d) had a dependence on ∇TA (∇TS). For example, consider the369

non-local interaction as depicted schematically in Fig. 7 for two hypothetical regions A and370

B. The coefficients of the local-LIM (Fig. 2) are meant to represent processes 1-4 (a → 1,371

d → 2, c → 3, b → 4) in Fig. 7, which portray radiative and thermal heat flux anomalies as372

posited by BB98. But the a-d coefficients may also implicitly represent non-local processes373

5-12 especially in regions where advection is important (e.g. WBC). Additionally, processes374

7-10 in Fig. 7 represent the indirect remote interaction of TA and TS through changes375

in ∇TA, ∇TS, cloud cover, wind or moisture anomalies that are not represented by the376

local-LIM but may improve the non-local model’s predicted covariance.377

We explore explicitly resolving non-local interactions in this section by constructing a378

LIM from a multidimensional state vector consisting of anomalies averaged within certain379

regions, or boxes, following Shin et al. (2010). The boxes are chosen based on: (i) SST380

variance (Fig. 1a) and (ii) the patterns of the leading two empirical orthogonal functions381

(EOFs) of weekly wintertime North Pacific (20-65oN) SST anomalies. The two EOFs, which382

are the only statistically separable ones and explain a combined 43% of the variance, are383

shown in Fig. 8 along with the boxes. TS and TA anomalies are averaged within each384

box to create the state vector, XB. Each box contains the same amount of grid points,385

but note that variability in the west may have smaller-scale, higher-frequency features (see386

Hosoda and Kawamura 2005). We estimate the dynamical operator B (to distinguish from387

L in the local-LIM) through (A1) using the same procedure as for L (7-day running mean,388

τ = 7 days). Then B is used to generate the predicted lag-covariance out to 90 days through389

(A2). Hereafter, we refer to the non-local LIM as the box-LIM. For direct comparison, we390

also fit a local-LIM separately to each box denoting the resulting operators LB. We can391

then explore whether the local-LIM adequately represents the additional complexity of the392

box-LIM and in particular, the extent to which the dynamics and coupling are truly local.393
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We first address how the number of boxes contained inXB affects forecast skill. We design394

five experiments, shown in Table 1, by varying the combination of boxes that comprise XB
395

from a total of 2 to 5. Experiment 1 starts by using just two boxes, 1 and 4, which are396

used in all the other experiments. Figure 9 illustrates the impact of adding additional boxes397

with the 1-90 day forecast skill of TS at boxes 1 (Gulf of Alaska) and 4 (WBC region) for398

all experiments. Additionally, Table 1 shows the day 90 skill for TS and TA. The skill is399

cross-validated using independent data as outlined in Winkler et al. (2001). Figure 9 shows400

a general increase in skill, mainly in Box 1, as additional boxes are added. However, the401

increase is not steady as it is most rapid from Exp1 through 3, but negligible once XB
402

contains more than four boxes. Several four-box variations of XB, with and without boxes403

1 and 4, support this (not shown). Of all boxes, Box 4 skill shows the least improvement404

with the addition of more boxes, implying that its dynamics are less affected by remote405

interaction though it is still important in elevating the skill of other boxes (such as Box 1).406

We evaluate the box-LIM further by comparing it to the local-LIM. Figure 10 shows the407

1-90 day skill across all boxes for TS and TA using B from Exp3 and LB for each box, as408

a pattern anomaly correlation with observations. We use Exp3 since it captures almost all409

the skill achievable from the box-LIM. Adding non-local interaction boosts skill in both TS410

and TA forecasts. Although this is true for all boxes (not shown), the effect is relatively411

larger in boxes 1,3 (not shown). Next, we recalculate skill after isolating the local processes412

of B (setting all non-local processes to zero) and denoting this operator B1d, shown in Fig.413

10. The skill using B1d is worse than LB for both TA and TS, implying that the local-414

LIM coefficients a-d implicitly incorporate some non-local processes. Separately suppressing415

remote TA (processes 5,6 in Fig. 7) and TS (processes 11,12) interactions indicates the416

absence of remote TA interaction is responsible for most of the skill degradation (not shown),417

which is physically plausible on the relatively short timescales we consider.418

Finally, we investigate whether the local-LIM and box-LIM differ in their treatment of419

coupling. The observed and predicted lagged cross-covariance using B and LB is shown in420
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Fig. 11 for boxes 3 (east-central North Pacific) and 4 (WBC region). In both boxes, the421

cross-covariance is maximized when TA leads TS by 5-7 days, as expected when TA forces422

TS. However, even though weekly TS and TA variability is comparable between boxes 3 and423

4 (cf. Fig. 1a,b), the cross-covariance is much higher at box 3 across all lags, implying a424

much stronger local coupling here. In box 4 (Fig. 11b), the local-LIM and box-LIM both425

predict the cross-covariance within the 95% confidence range based on 200 iterations of a426

Monte Carlo simulation, though both underestimate the cross-covariance when TS leads by427

more than 60 days. Meanwhile, the box-LIM outperforms the local-LIM at box 3 (Fig. 11a),428

though both underestimate the magnitude of the cross-covariance. Note that box 3 has a429

well-documented ENSO teleconnection that may explain the difference between the box-LIM430

and local-LIM prediction there. Lastly, we solve the fluctuation-dissipation relation (A3) by431

removing all processes that represent coupling in B and LB, denoting the uncoupled oper-432

ators Bu and LB,u, respectively. Figure 12 shows that the fraction of retained TS variance433

is nearly identical between the box-LIM and local-LIM, and also confirms that the WBC434

region (box 4) has substantially more uncoupled SST variance relative to the other boxes.435

There are some minor discrepancies between uncoupled TA variance among boxes, but this436

disappears upon averaging over all boxes and could be due to uncertainties in the coefficients437

of B and LB.438

439

5. Conclusions440

A coupled local-LIM of TA and TS fit to observations predicts lagged covariance statistics441

well on timescales up to a season. The main additions to the findings of BB98 are: (i)442

the model does surprisingly well in dynamically active oceanic regions but only with the443

inclusion of a substantial amount of TS noise forcing and (ii) local coupling varies very444

strongly over the basin, generally being more important as one moves east across the North445

Pacific. Uncoupling the model’s simple dynamics results in a near complete elimination of446

SST variability everywhere away from the WBC region, while TA variability is only slightly447
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affected. In the WBC region, ∼50% of monthly TS variability appears intrinsic to the ocean.448

It is important to recall that our use of the term coupling does not differentiate between449

the relative magnitude of TS versus TA forcing, as even in a strongly coupled region like the450

eastern North Pacific, nearly all SST variability is driven by TA. Thus, in this context and in451

BB98, strong coupling mainly drives an increase in the persistence of TA and TS anomalies.452

We apply the same analysis to two coupled GCMs using the same atmospheric GCM453

but either a high (0.1o) or low(1.0o) resolution ocean model. We find that the 0.1o model454

generates more SST variability compared to the 1.0o model and observations, but better455

reproduces the latitude of maximum variability within the WBC (cf. Fig. 1a with Fig.456

6a,b). By uncoupling L in the local-LIM of each GCM, we find the 0.1o ocean model shows457

substantially more intrinsic SST variability within the WBC compared to the 1o model. This458

difference is partially explained by the near absence of TS noise forcing within the 1o, while459

the 0.1o model generally overestimates this quantity within the WBC (cf. Fig. 4a and 6e,f).460

Though the large overestimate of TS variance within 0.1o model is certainly a caveat that461

makes it difficult to choose one GCM as superior over the other, it is clear that resolving462

ocean eddies properly in future coupled GCMs will likely yield a significant impact on their463

depiction of air-sea interaction.464

We remove the 1-D constraint of the local-LIM by creating a box-LIM based on area-465

averaged TA and TS anomalies located in regions of high SST variance (Fig. 8). The skill of466

the box-LIM shows improvement over its local-LIM equivalent in both TS and TA. However,467

subsequent modification of the box-LIM to remove non-local interaction shows a substantial468

drop in skill, suggesting that the local-LIM coefficients implicitly incorporate some non-local469

processes (Fig. 10). Furthermore, the role of non-local interaction affects the eastern boxes470

more than those in the west, likely due to a significant portion of ENSO forcing that is471

not explicitly represented by our box-LIM framework. A logical next step is to explicitly472

include the tropical Pacific into the state vector XB as in Newman et al. (2003). Meanwhile,473

concerning coupling, the box-LIM and local-LIM yield nearly identical results (Fig. 12).474
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Finally, the concept of “retained” SST variance deserves some discussion. In the purely475

passive model of BB98, there is no retained SST variability if the dynamics are uncoupled.476

For this reason, extreme caution was suggested in the design of SST-forced AGCM experi-477

ments. The results herein suggest that enough independent SST variability exists within the478

WBC region so that it is not unreasonable to prescribe SST anomalies there. This supports479

the approach of experiments by Yulaeva et al. (2001), Liu and Wu (2004), Minobe et al.480

(2008) and Kwon et al. (2011), all of which target the WBC by forcing with either SST,481

oceanic heat flux convergence or oceanic mixed-layer heat content anomalies. Note, however,482

that even in this region, ∼50% of SST variability is coupled to the atmosphere, so the prob-483

lem of forcing an atmospheric GCM with TA-driven SST anomalies cannot be ignored. Even484

though we have shown that regions within the WBC experience ocean-driven SST variabil-485

ity, the methods in this study are insufficient in determining how these “retained” anomalies486

influence the atmosphere. Clearly, Fig. 5b suggests the atmospheric response must be sig-487

nificantly non-local, as alluded to by Frankignoul et al. (2011) and Taguchi et al. (2012).488

Higher-order models are currently being developed to determine whether the intrinsic SST489

anomalies exert a simple boundary layer atmospheric response that is quickly overridden490

with intrinsic atmospheric variability, or a deeper response that could potentially influence491

large scale atmospheric modes, possibly leading to longer-term predictability.492
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APPENDIX A497

498

Estimating the LIM coefficients499

Using LIM, we assume a stochastically forced system with stationary statistics and dy-500

namics that are linear, or can be approximated as linear functions of TA and TS (Sura and501

Newman 2008). Intuitively, TA and TS are chosen because TS variability largely depends on502

the net turbulent heat flux (Fnet) in which TA is a dominant factor (Cayan 1992; Alexander503

and Scott 1997). Other variables that are important to Fnet, such as specific humidity, can504

to some degree be parameterized as a function of TA. After solving the discretized form of505

(2) for x(t), multiplying the result by x(t + τ) [where τ is a lag time of 7 days] and taking506

the expectation (denoted by 〈 〉), L is estimated as:507

L =
1

τ
ln
[

C(τ)C(0)−1
]

(A1)

where C(τ) =
〈

x(t+τ)x(t)T
〉

is the τ -lag covariance and C(0) =
〈

x(t)x(t)T
〉

is the zero-lag508

covariance. The choice of τ is relatively subjective but it is a key test of the LIM to consider509

a range of τ and verify that L does not significantly change (Penland and Sardeshmukh510

1995). However, when altering τ , it is sometimes necessary to filter the data to remove very511

high frequency variability. We use a range of τ=[1,3,5,7,11,15,21] and accordingly, a boxcar512

filter of the same length as τ to smooth x. For τ < 7 days, L is not constant; on the other513

hand, L is nearly unchanged for τ > 7, so we set τ = 7.514

Since the noise forcing in (2) is unpredictable, the most likely evolution of x(t) at time515

t + τ is (Penland and Sardeshmukh 1995):516

517

x(t+ τ) = exp(Lτ)x(t). (A2)
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Eigenanalysis of L yields eigenvectors and potentially complex eigenvalues, which together518

characterize the eigenmodes of (A2) (Penland 1996; Penland and Sardeshmukh 1995). For519

the local-LIM, we have two eigenmodes and find that the accompanying eigenvalues are real520

and negative, implying anomaly decay to climatology over a finite time. This is not true for521

the box-LIM, which has several complex eigenmodes, though all have negative real parts.522

The LIM explains the balance of external forcing, ξ, that is constantly being damped523

back towards climatology by L, which is quantified by the fluctuation-dissipation relation524

(FDR; Penland and Matrosova 1994):525

dC(0)

dt
= LC(0) +C(0)LT +Q = 0. (A3)

where Q =
〈

ξξT
〉

dt (Penland 1996), or:526

527

Q =







〈ξAξA〉 〈ξAξS〉

〈ξSξA〉 〈ξSξS〉







dt,

where ξA(ξS) represents the TA (TS) noise forcing, and the diagonal elements of Q are528

referred to as the TA (TS) noise covariance, QA (QS), respectively.529

In practice, L is determined through (A1) and Q is determined as a residual in (A3)530

under the assumption that the system’s statistics are stationary, dC(0)/dt = 0 (Penland531

1996). Additionally, L and Q can depend on the annual cycle, which can influence the532

quality of the forecast in (A2) (Penland and Ghil 1993). We recalculate L and Q using533

all months and just warm months (Apr-Oct) and note at least two substantial differences534

between the winter-only LIM. First, the summer LIM has a generally weaker Q consistent535

with reduced atmospheric variability during the warm months. Second, the model skill is536

lower, likely due to the elevated role non-linear effects such as cloud-cover (e.g. Park et al.537

2006) in dictating SST variability during the summer. Finally, it is notable that the local538

noise approximation of BB98 and FH77 holds relatively well, as the off-diagonal elements of539

21



Q contribute little to the FDR balance (not shown).540
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List of figures720

Figure 1: Standard deviation of (a) weekly-averaged TS, (b) weekly- and (c) daily-averaged721

TA anomalies from OAFlux, extended winter only (NDJFM). TS variability is essentially722

unchanged when averaging daily to weekly to monthly. Weekly average TA is shown because723

a 7-day running mean is used in the LIM.724

725

Figure 2: Spatial variability of the coefficients in the dynamical operator L, found separately726

for every grid point using (a-d) OAFlux observations and (e-h) LR and (i-l) HR model out-727

put. See Section 3c for the details of the model configurations. The top (bottom) colorbar728

corresponds to the top (bottom) two rows. Coefficients a, d represent damping rate (days-1)729

of TA (TS), while coefficients b, c represent coupling strength (b: TS→TA and c: TA→TS).730

731

Figure 3: The observed (shading) lag-covariance for TS (a,c,e) and TA (b,d,f) when τ equals732

(a,b) 30 days, (c,d) 60 days, (e,f) 90 days. The contour encloses areas where the differ-733

ence between the observed lag covariance and that predicted by the local-LIM exceeds the734

p=0.025 confidence level from a Monte Carlo test. Note that the local-LIM generally under-735

estimates lagged covariance.736

737

Figure 4: (a) The normalized power spectra of TS (black), ηA (red), and ηS (blue) for 20738

randomly sampled points, shown as black dots in (c) over the North Pacific. Note that η is739

determined using a finite differencing approximation shown in (6). The ω-2 line is shown to740

reference an undamped Markov model. For clarity, ηA (ηS) has been scaled by 0.03 (0.003).741

Thus, the values on the y-axis are only relative and should be used to note the ω-dependence742

of each spectrum. The noise covariance (Q) of (b) TA and (c) TS calculated through (A3)743

separately at every grid point using L and the observed covariance structure.744

745

Figure 5: The fractional amount of retained (a) monthly averaged TS and (b) total TA vari-746
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ability after integrating (2) with the uncoupled operator Lu and noise Qu.747

748

Figure 6: (a & b) Standard deviation of weekly averaged, extended winter (NDJFM) TS749

anomalies from CCSM3.5 with an ocean model resolution of (a) 1o (LR) and (b) 0.1o (HR).750

These can be directly compared to Fig 1a. The white contours in (b) denote values exceeding751

the colorbar with a 0.2oC increment. (c & d) Same as Fig. 5a except for (c) LR and (d)752

HR. (e & f) Same as Fig. 4b except for (e) LR and (f) HR. The white contours in (f) denote753

values exceeding the colorbar with a 0.02oC2 day-1 increment.754

755

Figure 7: Schematic of interactions in a hypothetical TA, TS coupled model of two boxes, A756

and B. Processes are arbitrarily labeled for use within the discussion.757

758

Figure 8: The leading two EOFs of weekly averaged, wintertime (NDJFM) SST anomalies759

over the North Pacific (20-60oN, 120oE-120oW). Boxes indicate the averaging regions used to760

build the box-LIM (see text). Values in the top right show the percent of variance explained761

by the EOF. Note that only these two EOFs are statistically separable using the technique762

of North et al. (1982).763

764

Figure 9: (a) Cross-validated skill as a function of lead-time for Box 1 and Box 4 TS (anomaly765

correlation with observations) using B from the five experiments shown in Table 1. The black766

dots indicate the day 90 skill of Box 1 and 4 in the local-LIM. Box 1, the dashed line showing767

the skill of exp3 is masked by the solid line showing exp4.768

769

Figure 10: Cross-validated pattern anomaly correlation with observations of TS and TA us-770

ing B (solid), LB (dash) and B1d (dotted) from Exp3.771

772

Figure 11: Observed (solid), and predicted (dash: using B from exp3; dotted: using LB)773
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lag cross-covariance between TS and TA as a function of lag time for (a) box 3 (east-central774

Pacific), and (b) box 4 (WBC region). TA leads (lags) TS when the lag time is negative775

(positive). Gray crosses indicate the upper (97.5%) and lower (2.5%) ranges using 200 iter-776

ations of a Monte Carlo test.777

778

Figure 12: (Bottom) The fraction of TS and TA variance retained after uncoupling B (from779

Exp3, black) and LB (gray) at every box. Also shown is the average across all boxes for TS780

and TA.781
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Exp  Boxes used Day 90 skill (Box 1) Day 90 skill (Box 4) 

TS TA TS TA 

1 1, 4 0.60 (0.63) 0.42 (0.30) 0.47 (0.45) 0.23 (0.12) 

2 1, 2, 4 0.68 0.49 0.47 0.23 

3 1-4 0.71 0.52 0.49 0.24 

4 1-5 0.71 0.52 0.48 0.24 

5 1-4, 6 0.73 0.54 0.49 0.23 

 

Table 1: Box-LIM experiments 1-5 constructed by building the state vector XB from the 

specified boxes (see Fig. 8). Also shown is the 90-day cross-validated forecast skill, as an 

anomaly correlation, at boxes 1 and 4. The cross-validated 90-day local-LIM skill is 

shown in parentheses. 
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Figure 1: Standard deviation of (a) weekly-averaged TS, (b) weekly- and (c) daily-

averaged TA anomalies from OAFlux, extended winter only (NDJFM). TS variability is 

essentially unchanged when averaging daily to weekly to monthly. Weekly average TA is 

shown because a 7-day running mean is used in the LIM. 
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Figure 2: Spatial variability of the coefficients in the dynamical operator L, found 

separately for every grid point using (a-d) OAFlux observations and (e-h) LR and (i-l) 

HR model output. See Section 3c for the details of the model configurations. The top 

(bottom) colorbar corresponds to the top (bottom) two rows. Coefficients a,d represent 

damping timescales (days-1) of TA (TS), while coefficients b,c represent coupling strength 

(b: TSTA and c: TATS). 
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Figure 3: The observed (shading) lag-covariance for TS (a,c,e) and TA
 (b,d,f) when τ 

equals (a,b) 30 days, (c,d) 60 days, (e,f) 90 days. The contour encloses areas where the 

difference between the observed lag covariance and that predicted by the local-LIM 

exceeds the p=0.025 confidence level from a Monte Carlo test. Note that the local-LIM 

generally underestimates lagged covariance. 
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Figure 4: (a) The normalized power spectra of TS (black), ηA (red), and ηS (blue) for 20 

randomly sampled points, shown as black dots in (c) over the North Pacific. Note that η 

is determined using a finite differencing approximation shown in (6). The ω-2 line is 

shown to reference an undamped Markov model. For clarity, ηA (ηS) has been scaled by 

0.03 (0.003). Thus, the values on the y-axis are only relative and should be used to note 

the ω-dependence of each spectrum. The noise covariance (Q) of (b) TA and (c) TS 

calculated through (A3) separately at every grid point using L and the observed 

covariance structure.  
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Figure 5: The fractional amount of retained (a) monthly averaged TS and (b) total TA 

variability after integrating (2) with the uncoupled operator LU and noise QU. 
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Figure 6: (a & b) Standard deviation of weekly averaged, extended winter (NDJFM) TS 

anomalies from CCSM3.5 with an ocean model resolution of (a) 1° (LR) and (b) 0.1° 

(HR). These can be directly compared to Fig 1a. The white contours in (b) denote values 

exceeding the colorbar with a 0.2°C increment. (c & d) Same as Fig. 5a except for (c) LR 

and (d) HR. (e & f) Same as Fig. 4b except for (e) LR and (f) HR. The white contours in 

(f) denote values exceeding the colorbar with a 0.02°C2 day-1 increment. 
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Figure 7: Schematic of interactions in a hypothetical TA, TS coupled model of two boxes, 

A and B. Processes are arbitrarily labeled for use within the discussion. 
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Figure 8: The leading two EOFs of weekly averaged, wintertime (NDJFM) SST 

anomalies over the North Pacific (20-60°N, 120°E-120°W). Boxes indicate the averaging 

regions used to build the box-LIM (see text). Values in the top right show the percent of 

variance explained by the EOF. Note that only these two EOFs are statistically separable 

using the technique of North et al. (1982). 
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Figure 9: (a) Cross-validated skill as a function of lead-time for Box 1 and Box 4 TS 

(anomaly correlation with observations) using B from the five experiments shown in 

Table 1. The black dots indicate the day 90 skill of Box 1 and 4 in the local-LIM. For 

Box 1, the dashed line showing the skill of exp3 is masked by the solid line showing 

exp4.  
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Figure 10: Cross-validated pattern anomaly correlation with observations of TS and TA 

using B (solid), LB (dash) and B1d (dotted) from Exp3. 
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Figure 11: Observed (solid), and predicted (dash: using B from exp3; dotted: using LB) 

lag cross-covariance between TS and TA as a function of lag time for (a) box 3 (east-

central Pacific), and (b) box 4 (WBC region). TA leads (lags) TS when the lag time is 

negative (positive). Gray crosses indicate the upper (97.5%) and lower (2.5%) ranges 

using 200 iterations of a Monte Carlo test. 
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Figure 12: (Bottom) The fraction of TS and TA variance retained after uncoupling B (from 

Exp3, black) and LB (gray) at every box. Also shown is the average across all boxes for 

TS and TA. 
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